
Maximize the Code Coverage for Test Suit by
Genetic Algorithm

1Mohd Athar, 2Israr Ahmad
1Research Scholar, Shri Venkateshwara University, Gajraula, India

2Jamia Millia Islamia (Central University), New Delhi, India

Abstract— Software testing is important but it possesses
some fundamental challenges. It poses two essentially arduous
jobs; selecting test cases and assessing test results.
Optimization problems can be unbridled by genetic algorithm
(GA) which can be regarded as computer model of biological
evolution. It works on principle of evolution, where superior
chromosomes (having greater fitness value) are chosen for
mutation and crossover operations. Evolution continues until
the optimized solution is achieved. Good results are found
astoundingly speedily when GA is implemented. Generating
optimized test suit (TS) is meta-heuristic problem which can
be resolved by GA. The only objective of programming is not
to determine the algorithm to accomplish a result, but
relevance and correctness of the result also requires to be
ascertained. Genetic Algorithm, which is a meta-heuristic
algorithm, is employed for optimizing path testing to achieve
total code coverage.

Keywords— Genetic Algorithm, Software Testing, Software
Under Test, Code Coverage, Test Suit.

I. INTRODUCTION

Software testing is a main method for improving the
quality and increasing the reliability of software now and
thereafter the long-term period future. It is a kind of
complex, labor-intensive, and time consuming work; it
accounts for approximately 50% of the cost of a software
system development. Increasing the degree of automation
and the efficiency of software testing certainly can reduce
the cost of software design, decrease the time period of
software development, and increase the quality of software
significantly. The critical point of the problem involved in
automation of software testing is of particular relevance of
automated software test data generation. Test data
generation in software testing is the process of identifying
a set of program input data, which satisfies a given testing
criterion. For solving this difficult problem, random,
symbolic, and dynamic test data generation techniques
have been used in the past. Recently, genetic algorithms
have been applied successfully to generate test data,
Khamis [2007].

Software testing is significant because failure in
computer software may have severe aftermaths. Software
testing is an investigation conducted to provide
stakeholders with information about the quality of the
product or software under test (SUT).

Software testing can be stated as the process of
validating and verifying that a computer
program/application/product:
 meets the requirements that guided its design and

development,

 works as expected,
 can be implemented with the same characteristics,
 and satisfies the needs of stakeholders.

Software testing has various different strategies. This
explicates and gives overview of key difference between
various approaches in it. Testing techniques are test cases
design method. Test cases are developed using various
testing techniques to achieve more effective testing of
application. Following are the testing techniques, Black-
box and White-box testing. Program is viewed as “black
box” in black-box testing approach. In this, test cases are
grounded on system specifications. White-box study
internal structure of program, i.e., it utilizes control
structure of the procedural design to obtain test cases.
White-box testing examines internal structures or workings
of an application without looking its functionality. In this,
inner composition of SUT is studied. WBT is a
complementary approach to BBT.

In Unit Testing (UT), individual units/components of a
software/system are tested. The purpose is to validate that
each unit of the software performs as designed. A single
module of SUT is taken and run singly in isolation from
remaining product. The intent of UT is, set apart each
component of the SUT and establishes that the individual
components have no error. It is comparatively less
problematic to rectify the single module, as size of code is
little, so errors are located easily. In Integration Testing
(IT), individual units are combined and tested as a group.
The purpose of this level of testing is to expose faults in
the interaction between integrated units. In System Testing
(ST), a complete, integrated software/system is tested. The
purpose of this test is to evaluate the system’s compliance
with the specified requirements. In Acceptance Testing
(AT), a software/ system are tested for acceptability. The
purpose of this test is to evaluate the system’s compliance
with the business requirements and assess whether it is
acceptable for delivery. Whenever a change in a software
application is made it is quite possible that other areas
within the application have been affected by this change.
The intent of Regression Testing (RT) is to ensure that a
change, such as a bug fix did not result in another fault
being uncovered in the application. Regression Testing is,
in fact, just a type of testing that can be performed at any
of the above four main levels of testing.

Program testing and fault detection can be assisted
significantly by testing tools. Testing tools can be put in
two classes, static & dynamic.

Static testing involves verification. Static Analyzers
probes programs thoroughly and automatically. These are

Mohd Athar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 431-435

www.ijcsit.com 431

employed on particular language, i.e., these are language
dependent. Code Inspectors scrutinizes program to vouch
that it hold on minimum quality criteria. Code Inspection
activity is found in some COBOL tools (like AORIS
librarian system).

Dynamic testing tools involve validation. These are
performing analysis of programs on executing them.
Coverage Analyzers finds degree of coverage. One of its
e.g. CodeCover tool. CodeCover Tool is a well-known
Eclipse plug-in, employed as white box coverage tool. This
tool is very apposite to assure weather TS is giving full
code coverage or not. Output Comparators checks weather
anticipated and obtained outputs are same or not. JUnit is
such a tool. JUnit Tool is Unit Testing framework for Java.
It is applied for testing of single component, IT and ST.
Features of JUnit are.
 test fixtures for sharing regular test data
 affirmations for testing expected results
 for running tests provides test runners

Static Analyzers and Code Inspectors are static testing
tools while Coverage Analyzers and Output Comparators
are dynamic testing tools.

II. MOTIVATION

Software testing is a principal technique which is
employed for bettering quality attributes of software under
test (SUT), particularly reliability and correctness but is
also regarded to be tedious. Genetic Algorithms (GAs)
have been used to automate the generation of test data for
software developed in various languages. The test data
were derived from the structure of program with the
objective to traverse all the branches in the software. The
input variables are represented in Gray code and as an
image of the machine memory. The power of using genetic
algorithms lies in their ability to handle input data which
may be of complex structure, and predicates which may be
complicated and unknown functions of the input variables.
Thus, the problem of test data generation is treated entirely
as an optimization problem. The Genetic Algorithms gives
most improvements over random testing when these sub
domains are small. Experiments show that Genetic
Algorithms required less central processing unit (CPU)
time in general reaching a global solution than random
testing. The greatest advantage is when the density of
global solutions is small compared to entire input search
domain.

III. PROBLEM STATEMENT

The furtherance of basic knowledge required to develop
new techniques for automatic testing. The main objective
is to automate generation of test suit (TS) for each module
of SUT by applying GA that could give 100% code
coverage.

The performance of Genetic Algorithms in
automatically generating test data for small procedures will
be assessed and analyzed. A library of Genetic Algorithms
will be to apply to large systems. The efficiency of Genetic
Algorithms in generating test data will be compared to

random testing with regard to the number of test data sets
generated and the CPU time required.

IV. APPROACH

Our intent is to optimize TS which could give 100 %
code coverage. This optimization which is grounded on
total code coverage needs that inner composition of
program is well-known. Inner composition of program can
be discovered by path testing in which a set of test-paths
are selected in a program. The different independent paths
in the program could be determined through control flow
graph (CFG). An independent path is that path in CFG that
has one novel set of processing statements or novel
conditions. Test cases carrying the information of the path
covered by them are grouped together to form initial
population of chromosomes and GA is applied. In the end,
TS is obtained for each module that gives hundred per-cent
code coverage. The main objective is to develop a test
system to exercise all the branches of the software under
test.

In order to generate the required test data for branch
testing genetic algorithms and random testing are used.
These two testing techniques will be compared by means
of the percentage of coverage which each of them can
achieve and by the number of test data.

V. METHODOLOGY

It delves into minutia of approach that is complied to
reach the motive of optimizing software testing using
genetic algorithm (GA). Generating test suite (TS) that
guarantees full coverage of statements in program, is
complex task. There are also odds that more than one test
case in TS are checking same path. This redundancy is not
appreciated. It is imperative to have optimized test data
sets. In this section, GA is employed for optimizing path
testing.

Figure 1: Block Diagram of Methodology

Figure 1, illustrates approach applied in this thesis to
accomplish the objective. Program analyzer analyzes the
java program and discovers all the modules in it. Control
Flow Graph (CFG) generator generates the CFG for each
module. CFG is used to find cyclomatic complexity (CC)
and total independent paths. Test cases are generated and
paths followed by them are found. The data regarding test
cases and path followed are put in a file. This file is
utilized when GA is employed. Each of the blocks is
explicated fully in this chapter.

Program Analyzer CFG Generator Modules

Graph

Paths info. Determining cyclomatic complexity
and independent paths Test cases

generation File storing
info.

regarding test
cases and path

covered

Applying Genetic
Algorithm

Optimized
test suite

Mohd Athar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 431-435

www.ijcsit.com 432

Methodology is divided into two approaches:
 Testing
 Applying Genetic Algorithm

VI. RESULTS AND ANALYSIS

Some Sample problems are taken which are java
program. Since WBT is concerned with code structure not
functionality, the module is doing simple task of displaying
some statements.

Figure 2: Sample Problem 1

In figure 2, program is analyzed to discover the modules
in it.

Figure 3: Output of Code Analyzer in TextArea

As depicted in figure 3, path of java file is given by
clicking on “click” button. Class and methods information
are displayed in “TextArea”. Information includes “class
name”, “methods in class”, “parameters of methods”. Code
Analyzer also writes output in a “*.txt” file, which is used
to fetch line numbers at which method definition exists.

Modules find by code analyzer is used by CFG
generator to build CFG. CFG generator fetches the line
number from where module begins from text file generated
by code analyzer.

Figure 4: CFG of sample problem 1

Figure 4 shows the CFG of main module of sample
problem. Orange buttons are vertices of CFG and arrows
are edges of CFG. Arrows are labeled like “1:2” showing
the flow of control from vertex “1” to vertex “2”.

Figure 5: CC and Independent Paths of sample problem 1

As depicted in Figure 5 cyclomatic complexity of “main”
module is 5 and all the independent paths are displayed.

After applying GA, following results were obtained.

 Figure 6: Initial Population vs. Generation Graph for sample problem 1

Mohd Athar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 431-435

www.ijcsit.com 433

Figure 6 shows graph of initial population taken and
number of generations taken to get an optimized solution.
Here initial chromosomes size is 5 and number of test
cases provided are 14.

Figure 7: Generation vs. Average Fitness Graph for sample problem 1

Figure 7 shows graph between generation and average
fitness of population. Initial chromosome size is 5 and test
cases provided are 14 and population size is 5. With every
passing generation, average fitness of population is
improving.

Taking Sample Problem 2:

Figure 8: Sample Problem 2

Figure 9: CFG of sample problem 2

Figure 10: CC and Independent Paths of sample problem 2

After applying GA, following results were obtained.

 Figure 11: Initial Population vs. Generation Graph for sample problem

2

Figure 11 shows graph of initial population taken and
number of generations taken to get an optimized solution.
Here initial chromosomes size is 18 and number of test
cases provided are 28.

Figure 12: Generation vs. Average Fitness Graph for sample problem 2

Mohd Athar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 431-435

www.ijcsit.com 434

Figure 12 shows graph between generation and average
fitness of population. Initial chromosome size is 18 and
test cases provided are 28 and population size is 30. With
every passing generation, average fitness of population is
improving.

The conclusion derived by taking different problems is
depicted in figure 13.

Figure 13: Chromosome Size vs. Generation Graph

Figure 13 depicts graph between initial size of
chromosomes (x-axis) and number of generations (y-axis)
taken to get an optimized solution. Initial population is
fixed to 5. Chromosome’s size is unswervingly
proportional to intricacy of module. So, as the intricacy of
module increases, it takes more generations to obtain an
optimized solution.

VII. CONCLUSION AND FUTURE WORK

In this work, optimization of software testing is
achieved by employing GA and the process is automated.
It results in formulation of test suite for a module that gives
100 % code coverage. The process of code analysis is to
find all modules in a program, generation of CFG, finding
cyclomatic complexity, determination of all independent
paths and GA steps are automated. GA is employed on a
set of different software programs and analyses are done
on results obtained which decide performance of GA.

In this work, test cases are created manually and paths
followed by them are manually determined. Roulette
Wheel Selection (RWS) selection operator is employed for
selecting parents and single point crossover is employed as
crossover operator. In future, test case generation from
operational profile and path followed by them in CFG can
be automated. Other selection operators and crossover
operator can be applied and comparison can be drawn
between performances of different operators.

In this work very basic fitness function is used. In
future, fitness function can be formulated based on
Average Percentage of Condition Coverage (APCC).

ACKNOWLEDGMENT

This paper could not be written to its fullest without the
guidance of Dr. Avdhesh Gupta, who served as my co-
supervisor.

REFERENCES AND BIBLIOGRAPHY
[1] Afzal, Wasif, and Richard Torkar: "On the application of genetic

programming for software engineering predictive modeling: A
systematic review" Expert Systems with Applications, vol. 38, no. 9,
pp. 11984-11997, 2011.

[2] Ali, Shaukat, Lionel C. Briand, Hadi Hemmati, and Rajwinder Kaur
Panesar-Walawege: "A systematic review of the application and
empirical investigation of search-based test case
generation" Software Engineering, IEEE Transactions, vol. 36, no.
6, pp. 742-762, 2010.

[3] Askarunisa, A., L. Shanmugapriya, and N. Ramaraj: "Cost and
Coverage Metrics for Measuring the Effectiveness of Test Case
Prioritization Techniques" INFOCOMP Journal of Computer
Science, pp. 1-10, 2009.

[4] Bhasin, Harsh, Harish Kumar, and Vikas Singh: "Orthogonal
Testing Using Genetic Algorithms" International Journal of
Computer Science and Information Technology, vol. 4, no. 2. pp.
374-377, 2013.

[5] Dustin, Elfriede, Jeff Rashka, and John Paul: “Automated software
testing” introduction, management, and performance. Addison-
Wesley Professional, 1999.

[6] El‐Far, Ibrahim K., and James A. Whittaker: "Model‐Based
Software Testing" Encyclopedia of Software Engineering, 2001.

[7] Fraser, Gordon, and Andreas Zeller.: "Mutation-driven generation of
unit tests and oracles" Software Engineering, IEEE Transactions,
vol. 38, no. 2, pp. 278-292, 2012.

[8] Gold Robert: "Control flow graphs and code coverage" pp. 739-749,
2010.

[9] Jin, Yaochu: "A comprehensive survey of fitness approximation in
evolutionary computation" Soft computing, vol. 9, no. 1, pp. 3-12,
2005.

[10] Khamis, Abdelaziz M., Moheb R. Girgis, and Ahmed S. Ghiduk.:
"Automatic software test data generation for spanning sets coverage
using genetic algorithms" Computing and Informatics, vol. 26, no.
4, pp. 383-401, 2007.

[11] Konak, Abdullah, David W. Coit, and Alice E. Smith. "Multi-
objective optimization using genetic algorithms: A
tutorial." Reliability Engineering & System Safety, vol. 91, no. 9,
pp. 992-1007, 2006.

[12] Mahdavi, M., Mohammad Fesanghary, and E. Damangir: "An
improved harmony search algorithm for solving optimization
problems" Applied mathematics and computation, vol. 188, no. 2,
pp. 1567-1579, 2007.

[13] Mantere, Timo, and Jarmo T. Alander: "Evolutionary software
engineering, a review" Applied Soft Computing, vol. 5, no. 3, pp.
315-331, 2005.

[14] Offutt, Jeff, Shaoying Liu, Aynur Abdurazik, and Paul Ammann:
"Generating test data from state‐based specifications" Software
Testing, Verification and Reliability, vol. 13, no. 1, pp. 25-53, 2003.

[15] Pargas, Roy P., Mary Jean Harrold, and Robert R. Peck: "Test-data
generation using genetic algorithms" Software Testing Verification
and Reliability, vol. 9, no. 4, pp. 263-282, 1999.

[16] Roper, M.: “Software testing” International software quality
assurance Series, 1994.

[17] Sebesta, Robert W.: “Concepts of programming languages” vol. 4,
Addison Wesley, 2002.

[18] Srivastava, Praveen Ranjan, and Tai-hoon Kim: "Application of
genetic algorithm in software testing" International Journal of
software Engineering and its Applications, vol. 3, no. 4, pp. 87-96,
2009.

[19] Xu, B. W., X. Y. Xie, Liang Shi, and C. H. Nie: "Application of
genetic algorithms in software testing" Proc. of the Advances in
Machine Learning Application in Software Engineering. IGI
Global 317, 2007.

[20] Yu, Yuen Tak, and Man Fai Lau: "Fault-based test suite
prioritization for specification-based testing" Information and
Software Technology, vol. 54, no. 2, pp. 179-202, 2012.

Mohd Athar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 431-435

www.ijcsit.com 435

